Berlin, 21. Februar 2020

von der IHK Ostbrandenburg öffentlich bestellter und vereidigte Sachverständiger für Holz- und Holzleimbau

Bewertung der Tragfähigkeit historischer Holzkonstruktionen – Festigkeitssortierung im verbauten Zustand

Dipl.-Ing. (FH) Gunter Linke, Sachverständigenbüro Prof. Dr.-Ing. W. Rug c/o HNE Eberswalde, Alfred-Möller-Straße 1, 16225 Eberswalde

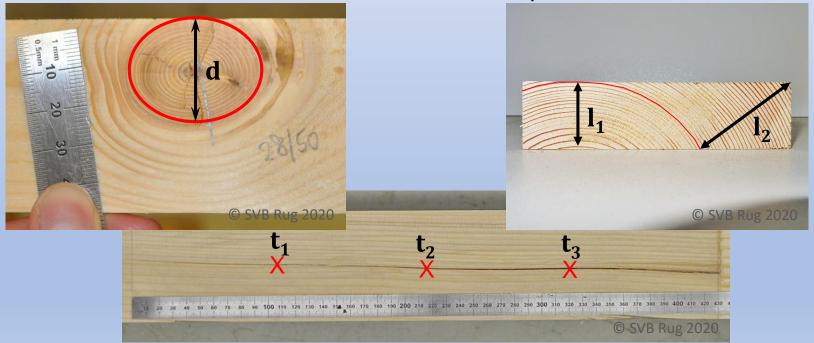
www.holzbau-statik.de linke@holzbau-statik.de

Problemstellung

Streuung der Materialeigenschaften

- standort- & wachstumsbedingt
- strukturbedingt
- herstellungsbedingt

Voraussetzung:


- Abschätzung der Streuungen
- Eingrenzung der Streuungen

Festigkeitssortierung von Bauholz

Festigkeitssortierung von neuem Bauholz:

 Visuelle Sortierung anhand der an der Bauteiloberfläche sichtbaren Wuchsmerkmale nach EN 14081-1 & DIN 4074-1/-5

Festigkeitssortierung von Bauholz

Festigkeitssortierung von neuem Bauholz:

- Visuelle Sortierung anhand der an der Bauteiloberfläche sichtbaren Wuchsmerkmale nach EN 14081-1 & DIN 4074-1/-5
 - Geringe Korrelation zwischen visuelle feststellbaren Merkmalen und den Festigkeits-/Steifigkeitseigenschaften
 - Geringe Trennschärfe
 - Bauholz mit hoher Tragfähigkeit (S13/C30 und höher) schwer bzw. nicht visuell sortierbar
 - Sortierklassen können nur in begrenztem Umfang den Festigkeitsklassen zugeordnet werden

Festigkeitssortierung von Bauholz

Festigkeitssortierung von neuem Bauholz:

 Maschinelle Sortierung anhand von Festigkeits-/Steifigkeitsindikatoren nach EN 14081-2/-3

RAUTE Timbergrader – Durchbiegungsmessung (Bildquelle: www.metriguard.com)

brookhuis mtgBATCH – Längsschwingungsmessung (Bildquelle: www.brookhuis.com)

Festigkeitssortierung von Bauholz

Festigkeitssortierung von neuem Bauholz:

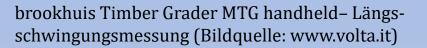
 Maschinelle Sortierung anhand von Festigkeits-/Steifigkeitsindikatoren nach EN 14081-2/-3

Microtec Goldeneye – Röntgendurchstrahlung/ Laserabtastung (Bildquelle: www.microtec.eu)

Festigkeitssortierung von Bauholz

Festigkeitssortierung von neuem Bauholz:

- Maschinelle Sortierung anhand von Festigkeits-/Steifigkeitsindikatoren nach EN 14081-2/-3
 - Apparative Messung von Materialeigenschaften, die eng mit den Festigkeits-/Steifigkeitseigenschaften korrelieren
 - Hohe Trennschärfe
 - Direkte Zuordnung zu Festigkeitsklassen möglich
 - Erfordert zertifizierte Technik & Personal



Festigkeitssortierung von Bauholz

Festigkeitssortierung von neuem Bauholz:

• Apparativ unterstützte visuelle Sortierung nach DIN 4074-1/-5

Metriguard E-Computer – Längsschwingungsmessung (Bildquelle: www.metriduard.com)

Festigkeitssortierung von Bauholz

Festigkeitssortierung von neuem Bauholz:

- Apparativ unterstütze visuelle Sortierung nach DIN 4074-1/-5
 - Kombination der visuellen Sortierung mit zerstörungsfreien Prüfmethoden
 - Visuelle Messung von oberflächlich erkennbaren Wuchseigenschaften & apparative Messung von Materialeigenschaften, die eng mit den Festigkeits-/Steifigkeitseigenschaften korrelieren
 - "Mittlere" Trennschärfe
 - Direkte Zuordnung zu Festigkeitsklassen möglich
 - Erfordert zertifizierte Technik & Personal

Festigkeitssortierung von Bauholz

Deckenkonstruktion eines Speichergebäudes (Baujahr: 1856)

Dachkonstruktion eines Hallenhauses (Baujahr: um 1900)

Festigkeitssortierung von Bauholz

Dachkonstruktion einer ehem. Militärakademie (Baujahr: 1904/05)

Dachkonstruktion eines Hallenhauses (Baujahr: um 1900)

Festigkeitssortierung von Bauholz

Festigkeitssortierung von Holzbauteilen in bestehenden Gebäuden:

- Die für neues Bauholz entwickelten Sortierverfahren können nicht oder nur mit großen Einschränkungen für Holzbauteile im eingebauten Zustand angewendet werden.
 - Eingeschränkte Einsehbarkeit
 - Fehlende Personalqualifizierung hinsichtlich der Besonderheiten im Bestand
 - Fehlende, flexibel handhabbare & zertifizierte Gerätetechnik

Festigkeitssortierung von Bauholz

Fachgerechte
Instandsetzung
(substanzschonend,
wirtschaftlich)

Voraussetzung:
Erfassung & Bewertung
des Bauzustandes
und der Standsicherheit

Festigkeitssortierung von Bauholz

Festigkeitssortierung von Holzbauteilen in bestehenden Gebäuden:

- Aktuelle Baupraxis
 - Eine Festigkeitssortierung erfolgt in den wenigsten Fälle
 - Tragfähigkeit von verbautem Holz wird meist nur intuitiv abgeschätzt
 - Statische Berechnungen werden hauptsächlich unter der Annahme von "normalem" Bauholz (S10/LS10) geführt
- → Tragfähigkeitsreserven bzw. -defizite werden nicht aufgedeckt
- → wenig substanzschonende und unwirtschaftliche Eingriffe in das Tragwerk
- → Nicht fachgerechte Instandsetzungsmaßnahmen

Festigkeitssortierung von Bauholz

Festigkeitssortierung von Holzbauteilen in bestehenden Gebäuden:

- Eine umfassende und möglichst exakte Erfassung und Bewertung des Bauzustandes und der Standsicherheit ist die Voraussetzung für eine fachgerechte Instandsetzung
 - Visuelle Sortierung/Begutachtung allein ist nicht ausreichend
 - Kombination mit zerstörungsfreien/-armen Prüfmethoden erhöht die Genauigkeit und Zuverlässigkeit

Festigkeitssortierung von Bauholz

Festigkeitssortierung von Holzbauteilen in bestehenden Gebäuden:

Zusammenhang zwischen zerstörungsfrei messbaren Schätzwerten der Festigkeit (Indicating properties IP) und tatsächlich zerstörend gemessenen Festigkeiten

Schätzwert der Festigkeit (IP)	Bestimmtheitsmaß (R²)	Korrelationskoeffizienz (r)
Jahrringbreite	0,15 0,35	0,38 0,59
Ästigkeit	0,15 0,35	0,38 0,59
Rohdichte	0,20 0,40	0,45 0,63
Eigenfrequenz, Ultraschallgeschwindigkeit	0,30 0,55	0,55 0,74
Elastizitätsmodul, statisch	0,40 0,65	0,63 0,81
Elastizitätsmodul, dynamisch	0,30 0,55	0,55 0,74
Ästigkeit & Rohdichte	0,40 0,60	0,63 0,77
Ästigkeit & Elastizitätsmodul	0,55 0,75	0,74 0,87
Ästigkeit, Rohdichte & Elastizitätsmodul	0,55 0,80	0,74 0,89

Quelle: Sandomeer M. K., Steiger R.: Potenzial der maschinellen Festigkeitssortierung von Schnittholz; Zukunft Holz – Statusbericht zum aktuellen Stand der Verwendung von Holz und Holzprodukten im Bauwesen und Evaluierung künftiger Entwicklungspotential (2009)

Vergleichende Materialuntersuchungen

Zielstellung:

Untersuchung der Leistungsfähigkeit, Genauigkeit und Zuverlässigkeit ausgewählter, für die Bauzustandserfassung geeigneter zerstörungsfreier/-armer Prüfmethoden

- Quantifizierung der methodenspezifischen Genauigkeit/ Zuverlässigkeit und Ermittlung von potentiellen Fehlerquellen
- Entwicklung statistisch abgesicherter **Modelle zur Auswertung** von Ergebnissen aus **zerstörungsfreien/-armen Prüfmethoden**
- Festlegung von Rahmenbedingungen für die zuverlässige Anwendung von zerstörungsfreien/-armen Prüfmethoden

Vergleichende Materialuntersuchungen

Untersuchungsmethodik:

- Visuelle Sortierung nach EN 14081-1 & DIN 4074-1/-5
- Zerstörungsfreie Ultraschall-Impulslaufzeitmessungen
- Zerstörende Biegeversuche nach EN 408
- → Entwicklung der Methodik an Proben aus Neuholz (Fichte aus MNO-Europa & Kiefer/Eiche aus NO-Deutschland; jeweils ca. 300 Stk.)
- → Verifizierung der Methodik an Proben aus Altholz (Fichte/Kiefer/Eiche aus bestehenden Konstruktionen in NO-Deutschland; jeweils ca. 40...80 Stk.)

Vergleichende Materialuntersuchungen

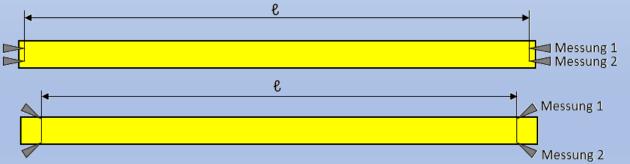
Visuelle Sortierung nach EN 14081-1 & DIN 4074-1/-5:

Vergleichende Materialuntersuchungen

Visuelle Sortierung nach EN 14081-1 & DIN 4074-1/-5:

Vergleichende Materialuntersuchungen

Visuelle Sortierung nach EN 14081-1 & DIN 4074-1/-5:



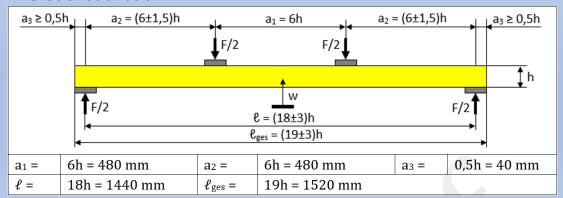
Vergleichende Materialuntersuchungen

Zerstörungsfreie Ultraschall-Impulslaufzeitmessungen:

Direkte & Indirekte Messung der Schallgeschwindigkeit (Messgerät: Sylvatest Trio)



Prüfschema Ultraschall-Impulslaufzeitmessungen



Vergleichende Materialuntersuchungen

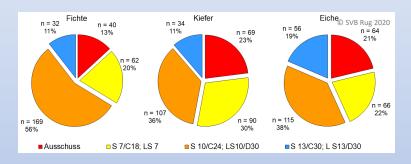
Zerstörende Biegeversuche nach EN 408:

Versuchsaufbau

Schematischer Versuchsaufbau nach EN 408, Abschnitte 10 & 19

Vergleichende Materialuntersuchungen

Ergebnisse & Auswertung: visuelle Sortierung

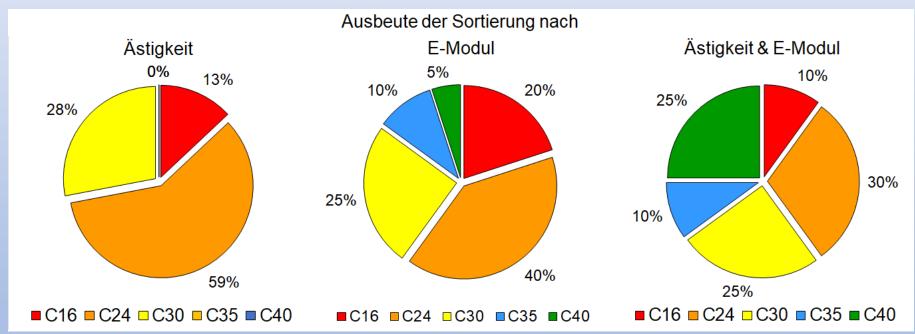


Ausschlaggebende Wuchsmerkmale: Äste, Faserneigung, Risse

Vergleichende Materialuntersuchungen

Ergebnisse & Auswertung: visuelle Sortierung

- Relativ großer Anteil "Ausschuss"
- Überwiegender Anteil S7/LS7 (geringe Tragfähigkeit) und S10/LS10 (normale Tragfähigkeit)
- Relativ geringer Anteil S13/LS13 (hohe Tragfähigkeit)


Die Übereinstimmung zwischen dem Ergebnis der visuellen Sortierung und den zerstörenden Biegeversuchen beträgt nur ca. 25 %!

→ Die tatsächliche Tragfähigkeit wurde überwiegend falsch abgeschätzt!

Vergleichende Materialuntersuchungen

Ergebnisse & Auswertung: visuelle Sortierung

Verbesserung des Sortierergebnisses durch Verwendung verschiedener Sortierkriterien

Quelle: Görlacher R.: Ein neues Meßverfahren zur Bestimmung des Elastizitätsmoduls von Holz; In: Holz als Roh- und Werkstoff 42 (1984), S. 219-222

Vergleichende Materialuntersuchungen

Ergebnisse & Auswertung: *Ultraschall-Impulslaufzeitmessung*

Sortierung anhand der Ultraschall-Geschwindigkeit:

- Aufstellung von Regressionsbeziehungen zwischen der Schallgeschwindigkeit und dem im Biegeversuch ermittelten statischen Elastizitätsmodul
- Ableitung von Grenzwerten mit Hilfe der normativ geregelten Elastizitätsmoduln (EN 338)
- Überprüfung der Grenzwerte anhand der Übereinstimmung zwischen Ultraschall-Impulslaufzeitmessung und Biegeversuchen
- Empirische Anpassung der Grenzwerte zum Erreichen einer höheren Übereinstimmung

Vergleichende Materialuntersuchungen

Ergebnisse & Auswertung: *Ultraschall-Impulslaufzeitmessung*

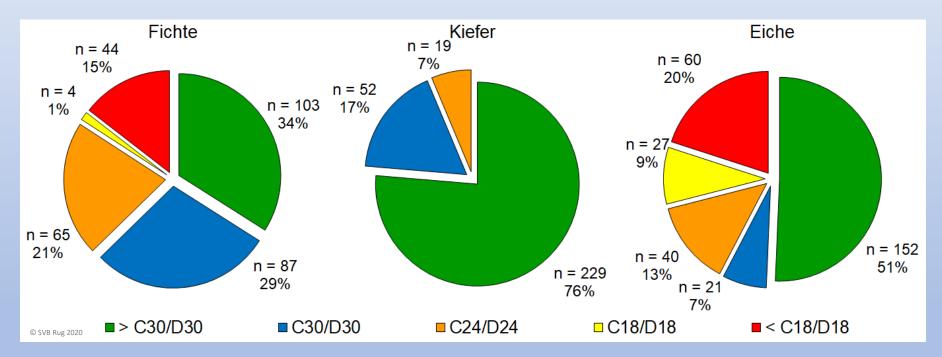
Regressionsbeziehungen zwischen Schallgeschwindigkeit und statischem Biege-Elastizitätsmodul

Beziehung	Fichte	Kiefer	Eiche
$V_{dir} \leftrightarrow E_{m}$	$E_{\rm m} = 4.6 v_{\rm dir} - 14267$ (r = 0.543)	$E_{\rm m} = 2.8 v_{\rm dir} - 1688$ (r = 0.284)	$E_{m} = 6.04v_{dir} - 15374$ (r = 0.829)
$V_{ind} \longleftrightarrow E_{m}$	$E_{\rm m} = 4.4 v_{\rm ind} - 12467$ (r = 0.564)	$E_m = 2.9v_{ind} - 2026$ (r = 0.317)	$E_{m} = 6.2v_{ind} - 15629$ (r = 0.844)

- Geringe Unterschiede zwischen direkter und indirekter Messung
- Ausprägung der Beziehungen schwach bis stark

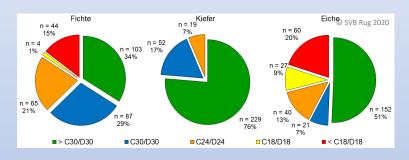
Vergleichende Materialuntersuchungen

Ergebnisse & Auswertung: *Ultraschall-Impulslaufzeitmessung*


Grenzwerte für die Ultraschallgeschwindigkeit

Fostiglesits	Fichte		Kiefer		Costigleoits	Eiche	
Festigkeits- klasse	Direkte	Indirekte	Direkte	Indirekte	Festigkeits- klasse	Direkte	Indirekte
Kiasse	Messung	Messung	Messung	Messung	Kiasse	Messung	Messung
C18	5100	4900	3900	3900	D24	4300	4200
C24	5500	5350	4600	4600	D30	4500	4400
C30	5750	5550	5000	4900	D35	4600	4600
C35	5950	5800	5300	5200	D40	4800	4700
C40	6150	6050	5700	5600	D50	5000	4900

Vergleichende Materialuntersuchungen


Ergebnisse & Auswertung: Ultraschall-Impulslaufzeitmessung

Vergleichende Materialuntersuchungen

Ergebnisse & Auswertung: Ultraschall-Impulslaufzeitmessung

- Relativ geringer Anteil <C18/D18
- geringerer Anteil C18/D18 C24/D24
- Überwiegender Anteil ≥ C30/D30
- Insgesamt deutliche Verbesserung der Ausbeute

Die Übereinstimmung zwischen dem Ergebnis der Ultraschall-Sortierung und den zerstörenden Biegeversuchen beträgt ca. 75 %!

→ Die tatsächliche Tragfähigkeit wurde zu einem großen Teil richtig abgeschätzt!

Vergleichende Materialuntersuchungen

Ergebnisse & Auswertung: Ultraschall-Impulslaufzeitmessung

Schlussfolgerung:

- Ultraschallgeschwindigkeit prinzipiell als Sortierkriterium anwendbar
- Ultraschall-Impulslaufzeitmessung sollte nur in Kombination mit anderen zerstörungsfreien/-armen Mess- und Prüfmethoden verwendet werden
- Verbesserung der Zuverlässigkeit durch Kombination mit weiteren Kriterien ist anzunehmen

Vergleichende Materialuntersuchungen

Ergebnisse & Auswertung: Sortierung mittels Sortierparameter

- Herangehensweise analog der maschinellen Festigkeitssortierung (Sortierparameter = Schätzwert für Zielgröße)
- Aufstellung von multiplen Regressionsbeziehungen (Einbeziehung mehrerer Mess-/Prüfmethoden)
- Ableitung, Überprüfung und Anpassung der Grenzwerte analog der Sortierung über die Ultraschallgeschwindigkeit
- Aufstellung eines mehrstufigen Regressionsmodells, um den Möglichkeiten angepasster Standsicherheitsnachweise Rechnung zu tragen

Vergleichende Materialuntersuchungen

Ergebnisse & Auswertung: Sortierung mittels Sortierparameter

Möglichkeiten angepasster Standsicherheitsnachweise:

- Hintergrund: Kenntnisstufen der Nachweisführung (bspw. vorgeschlagen in Loebjinski, et al., 2018)
- "Kenntnisstufe" = Grad der Untersuchung und der daraus resultierenden Informationen über die Konstruktion
- Vier Stufen der Kenntnis über die bestehende Konstruktion ("sehr gering"/ "Knowledge Level 0" bis "hoch"/"Knowledge Level 3")
- Voraussetzung: Feststellung der vorhandenen Materialqualität

Vergleichende Materialuntersuchungen

Ergebnisse & Auswertung: Sortierung mittels Sortierparameter

Kenntnisstufen (KL ... Knowledge Level) für den Standsicherheitsnachweis bestehender Konstruktionen

Kenntnisstufe	Mögliche Nachweismethoden
KL 0	Semi-Probabilistische Nachweismethoden
sehr geringer Kenntnisstand	
KL 1	Semi-Probabilistische Nachweismethoden
geringer Kenntnisstand	
KL 2	Semi-Probabilistische & probabilistische
normaler Kenntnisstand	Nachweismethoden
KL 3	Probabilistische Nachweismethoden
hoher Kenntnisstand	

Quelle: Loebjinski, M., Köhler, J., Rug, W., & Pasternak, H. (2018). Development of an optimisation-based and practice orientated assessment scheme for the evaluation of existing timber structures. In R. Caspeele, L. Taenve, & D. Frangopol (Eds.), Proceedings of IALCCE. Ghent, Belgium.

Vergleichende Materialuntersuchungen

Ergebnisse & Auswertung: Sortierung mittels Sortierparameter

Sortierstufen (SGL ... Strength Grading Level) & entsprechende Kenntnisstufen (KL ... Knowlegde Level)

Sortier-	Erforderliche Sortiermethode	Entsprechende
stufe		Kenntnisstufe
SCI 0	Keine Festigkeitssortierung erforderlich	KL 0
SGL 0	(Annahme von Materialkennwerten)	
SGL 1	Visuelle Sortierung nach EN 14081-1	KL 1
SCI 3	Apparativ unterstütze visuelle Sortierung	KL 2
SGL 2	(visuelle Sortierung & zerstörungsfreie Prüfmethoden)	
SGL 3	Apparativ unterstütze visuelle Sortierung	KL 2/3
	(visuelle Sortierung, zerstörungsfreie & -arme Prüfmethoden)	

Vergleichende Materialuntersuchungen

Ergebnisse & Auswertung: Sortierung mittels Sortierparameter

Sortierstufen (SGL ... Strength Grading Level) & entsprechende Kenntnisstufen (KL ... Knowlegde Level)

Sortier- stufe	Erfo	Umfassende Regelungen in vorhandenen		Entsprechende Kenntnisstufe
SGL 0	Keine Fe: (Annah	Sortiervorschriften		KL 0
SGL 1	Visuelle Sortierung nach EN 14081-1			KL 1
SGL 2	Apparativ unterstütze visuelle Sortierung			KL 2
JGL Z	(visuelle Sortierung & zerstörungsfreie Prüfmethoden)			
SGL 3	Apparativ unterstütze visuelle Sortierung		KL 2/3	
3GL 3	(visuelle Sortierung, zerstörungsfreie & -arme Prüfmethoden)			

Grundlegende Regelungen in vorhandenen Sortiervorschriften, aber keine konkreten Festlegungen zur letztendlichen Durchführung

Vergleichende Materialuntersuchungen

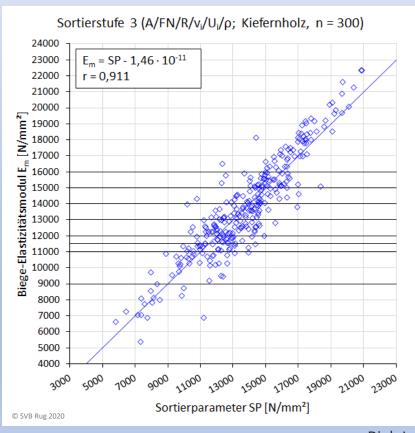
Ergebnisse & Auswertung: Sortierung mittels Sortierparameter

Verwendete Sortierkriterien:

- Visuelle Sortierung: Ästigkeit, Faserneigung, Risse
- → Übrige Sortierkriterien entweder in-situ nicht/schwer messbar (z.B. Jahrringbreite, Markröhre) oder in der Nachweisführung direkt zu berücksichtigen (bspw. Baumkante als Fehlfläche oder Krümmungen als Außermittigkeit)
- Zerstörungsfreie Prüfmethoden: Ultraschall-Impulslaufzeitmessung (Schallgeschwindigkeit, übertragene elektrische Spannung, dynamischer E-Modul)
- Zerstörungsarme Prüfmethoden: an kleinen fehlerfreien Proben ermittelte **Rohdichte** (bspw. Bohrkerne)

Vergleichende Materialuntersuchungen

Ergebnisse & Auswertung: Sortierung mittels Sortierparameter


Ergebnisse der multiplen Regressionsanalyse

Sortier-	Sortierkriterien		Korrelationskoeffizienten r		
stufe		Fichte	Kiefer	Eiche	
SGL 1	Ästigkeit/Faserneigung/Risse	0,294	0,535	0,310	
SGL 2	Ästigkeit/Faserneigung/Risse/Ultraschallgeschwindigkeit/ übertragene Spannung (direkte/indirekte Messung)	0,790/ 0,799	0,817/ 0,816	0,869/ 0,878	
SGL 3	Ästigkeit/Faserneigung/Risse/dyn. E-Modul/ Rohdichte (direkte/indirekte Messung)	0,803/ 0,815	0,931/ 0,916	0,885/ 0,899	

Vergleichende Materialuntersuchungen

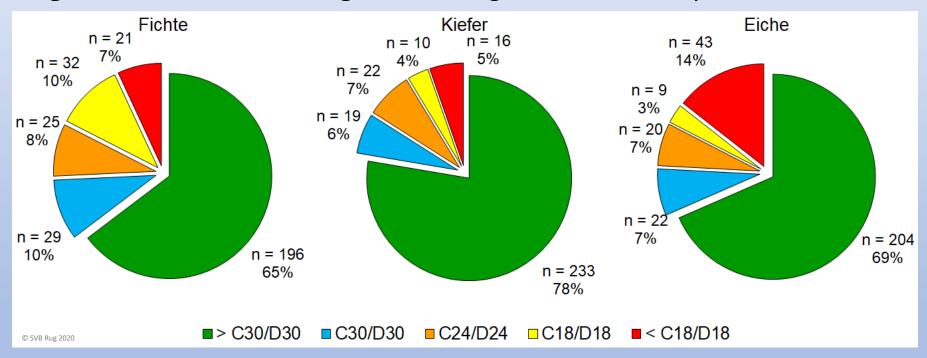
Ergebnisse & Auswertung: Sortierung mittels Sortierparameter

- Aufstellen linearer Regressionsbeziehungen zwischen Sortierparameter (IP) und Zielgröße (MOE) $MOE = a_{MOE} \cdot IP + b_{MOE}$
- Berechnung der Grenzwerte mit Hilfe der Materialkennwerte nach EN 338

$$S_{MOE} = \frac{MOE_{req} - b_{MOE}}{a_{MOE}}$$

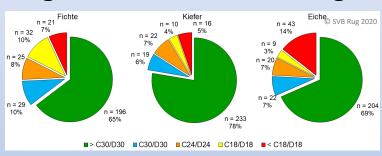
Vergleichende Materialuntersuchungen

Ergebnisse & Auswertung: *Ultraschall-Impulslaufzeitmessung*


Grenzwerte für den Sortierparameter

Festigkeitsklasse	Fichtenholz	Kiefernholz	Festigkeitsklasse	Eichenholz
n. EN 338	[N/mm²]	[N/mm²]	n. EN 338	[N/mm²]
<c18< td=""><td><9000</td><td><9000</td><td><d18< td=""><td><9500</td></d18<></td></c18<>	<9000	<9000	<d18< td=""><td><9500</td></d18<>	<9500
C18	9000	9000	D18	9500
C24	11000	11000	D24	10000
C30	12000	12000	D30	11000
C35	13000	13000	D35	12000
C40	14000	14000	D40	13000

Vergleichende Materialuntersuchungen


Ergebnisse & Auswertung: Sortierung mittels Sortierparameter

Vergleichende Materialuntersuchungen

Ergebnisse & Auswertung: Sortierung mittels Sortierparameter

- Relativ geringer Anteil <C18/D18
- geringerer Anteil C18/D18 C24/D24
- Sehr großer Anteil ≥ C30/D30
- Insgesamt deutliche Verbesserung der Ausbeute

Die Übereinstimmung zwischen dem Ergebnis der Ultraschall-Sortierung und den zerstörenden Biegeversuchen beträgt ca. 90 %!

- → Die tatsächliche **Tragfähigkeit** wurde **überwiegend richtig abgeschätzt**!
- → Kombination mehrerer Mess- & Prüfmethoden führt zu einer deutlichen Verbesserung der Zuverlässigkeit

Zusammenfassung

- Die Ultraschall-Impulslaufzeitmessung ist für die "in-situ Festigkeitssortierung" anwendbar
- Eine zuverlässige Anwendung ist nur bei kombiniertem Einsatz mit weiteren Prüfmethoden gegeben
- Eine Erprobung der Sortiermethode an bestehenden Holzkonstruktionen sowie in Laborversuchen an Altholz ist erforderlich

Altbau-Erneuerung: Baubestandsanalyse und Instandsetzungstechniken

Berlin, 21. Februar 2020

von der IHK Ostbrandenburg öffentlich bestellter und vereidigte Sachverständiger für Holz- und Holzleimbau

Bewertung der Tragfähigkeit historischer Holzkonstruktionen – Festigkeitssortierung im verbauten Zustand

Vielen Dank für ihre Aufmerksamkeit